1243 BAB XV PEMBIASAN CAHAYA. Apakah yang dimakud dengan pembiaan cahaya? 2. Apakah yang dimakud indek bia? 3. Bagaimana iat-iat pembiaan cahaya? 4. Author: Suharto Hardja. 231 downloads 559 Views 668KB Size. Report. DOWNLOAD PDF. Recommend Documents. BAB II : PEMBIASAN CAHAYA . Artikel ini membahas mengenai pembiasan cahaya dan kaitannya dengan terjadinya fenomena alam yang pernah kamu jumpai, yaitu pelangi. — Pelangi pelangi Alangkah indahmu Merah kuning hijau Di langit yang biru Pelukismu agung Siapa gerangan Pelangi pelangi Ciptaan Tuhan Hayooo… Siapa yang bacanya sambil nyanyi? Kamu pasti pernah dong ngeliat pelangi. Yap, persis seperti lirik lagu di atas, pelangi terdiri dari berbagai macam warna. Ada merah, kuning, juga hijau. Warna-warna itulah yang membuat pelangi jadi indah bila dipandang. Waahhh… keren banget, ya! Tuhan bisa menciptakan pelangi. Jangan lupa bersyukur ya akan kebesaran-Nya. Eits! Tapi, kamu tahu nggak sih gimana pelangi bisa terjadi? Nah, ternyata, fenomena alam yang satu ini terjadi karena adanya peristiwa pembiasan cahaya, lho! Wah, apa tuh pembiasan cahaya? Oke, kalau gitu, langsung aja yuk kita simak penjelasannya pada artikel berikut ini! Pembiasan Cahaya Sebelumnya, kamu sudah belajar mengenai pemantulan cahaya dan macam-macamnya, ya. Ternyata, selain cahaya dapat dipantulkan, cahaya juga dapat dibelokkan, lho. Peristiwa pembelokan cahaya inilah yang disebut dengan pembiasan cahaya. Menurut definisinya, pembiasan cahaya merupakan peristiwa pembelokan arah rambat cahaya karena melewati dua medium dengan kerapatan optik yang berbeda. Hukum Snellius tentang Pembiasan Cahaya Hmm… Maksudnya gimana, sih? Baca juga Tekanan Zat Padat dan Penerapannya dalam Kehidupan Oke, coba kamu perhatikan gambar di atas. Pada gambar tersebut, cahaya melewati dua medium dengan tingkat kerapatan yang berbeda, yaitu udara dan air. Udara memiliki susunan partikel yang lebih renggang, sehingga molekulnya dapat bergerak dengan bebas. Berbeda dengan air, ia memiliki susunan partikel yang lebih padat, sehingga molekulnya tidak mudah bergerak dengan bebas. Oleh karena itu, udara memiliki kerapatan yang lebih rendah dibandingkan dengan air. Perbandingan kerapatan molekul antara air liquid dan udara gas sumber FuseSchool via YouTube Besar kerapatan optik suatu medium dihubungkan dengan indeks bias n. Semakin besar indeks bias suatu medium, artinya semakin besar pula kerapatan optik medium tersebut. Akibatnya, cahaya yang melewati medium dengan indeks bias lebih besar tingkat kerapatan yang besar akan memiliki arah belok yang semakin besar pula. Besar kecilnya arah belok cahaya ini diukur dari bidang batas antara dua mediumnya, ya. Lalu, bagaimana jika suatu medium memiliki kerapatan optik yang kecil, seperti udara misalnya. Nah, hal ini berarti berlaku kebalikannya. Medium dengan kerapatan optik yang kecil, berarti indeks bias medium tersebut juga kecil. Akibatnya, cahaya yang melewati medium tersebut akan memiliki arah belok yang juga semakin kecil dari bidang batas antara dua medium. Gimana? Paham nggak, nih? Kalau masih belum paham, coba deh kamu perhatikan gambar berikut. Saat cahaya dibiaskan dari udara ke air gambar A, cahaya akan merambat dari medium yang kurang rapat ke medium yang lebih rapat. Air memiliki indeks bias yang lebih besar dari udara n2 > n1, sehingga arah belok cahaya dari bidang batas dua medium juga besar. Oleh karena itu, cahaya akan dibiaskan/dibelokkan mendekati garis normal. Sebaliknya, saat cahaya dibiaskan dari air ke udara gambar B, cahaya akan merambat dari medium yang lebih rapat ke medium yang kurang rapat. Udara memiliki indeks bias yang lebih kecil dari air n1 < n2, sehingga arah belok cahaya dari bidang batas dua medium juga kecil. Oleh karena itu, cahaya akan dibiaskan/dibelokkan menjauhi garis normal. Kamu dapat melihat perbedaannya pada gambar ya, kan? Baca juga Bunyi Hukum Newton dan Penerapannya dalam Kehidupan Sehari-hari Rumus dan Contoh Soal Pembiasan Cahaya Oke, sampai sini semoga kamu paham ya tentang pembiasan cahaya. Nah, berikut ini ada rumus yang bisa kamu pakai untuk mengerjakan soal yang berkaitan dengan pembiasan cahaya, loh. Perhatikan dan coba kita kerjakan beberapa soal berikut, yuk! Contoh soal 1. Cahaya merambat dari air ke kaca. Jika indeks bias air adalah 1,33 dan indeks bias kaca adalah 1,54, maka hitunglah besar kecepatan cahaya di kaca jika diketahui kecepatan cahaya di air sebesar 2,25 x 108 m/s. Jadi, besar kecepatan cahaya di kaca adalah 1,94 x 108 m/s. 2. Cahaya merambat dari udara ke air. Jika kecepatan cahaya di udara adalah 3 x 108 m/s dan indeks bias air adalah 4/3, maka tentukanlah besar kecepatan cahaya di air. Jadi, besar kecepatan cahaya di air adalah 2,25 x 108 m/s. Dua contoh soal di atas merupakan sebagian kecil dari tipe soal yang akan dikeluarkan pada materi pembiasan cahaya, ya. Jadi, kamu juga bisa mengasah kemampuanmu dengan berlatih tipe-tipe soal lainnya di ruangbelajar. Oke? Baca juga Mengenal Jenis-Jenis Cermin di Sekitar Kamu Oh iya, kamu masih ingat, nggak? Di awal tadi, kita sempat bertanya-tanya, bagaimana sih pelangi bisa terjadi? Terus, kamu juga sudah diberi tahu kalau terjadinya pelangi itu karena adanya pembiasan cahaya. Tapi, bagaimana bisa? Pelangi kan warnanya banyak, ada merah, kuning, hijau, juga warna-warna yang lain. Sedangkan, di pembahasan tadi, nggak ada tuh yang ngejelasin kalau cahaya akan dibelokkan, lalu “timbul warna-warni kayak pelangi”. Nah loh! Gimana, tuh? Hayooo… ada yang tahu kenapa bisa begitu? Kenapa, hey! Kasih tau, nggak? sumber Kalem, gengs. Tenang aja dan nggak usah khawatir. Penjelasannya ada di bawah ini, kok. Makanya, tetap simak, ya! Peristiwa Terbentuknya Pelangi Kamu sudah baca artikel tentang macam-macam sifat cahaya belum? Kalau sudah, kamu pasti tahu salah satu dari sifat cahaya adalah dapat diuraikan. Hmm… diuraikan bagaimana maksudnya? Oke, jadi sebenarnya, cahaya putih yang biasa kita lihat ternyata tersusun dari berbagai macam warna dan warna-warna tersebut dapat diuraikan atau dipecah-pecah. Hal ini yang menyebabkan cahaya putih disebut sebagai cahaya polikromatik, contohnya sinar matahari. Warna-warna pada cahaya putih ada banyak, lho! Ada merah, jingga, kuning, hijau, biru, nila, dan ungu. Biasanya sih, kita menyingkatnya dengan mejikuhibiniu. Sama dengan warna pada pelangi, bukan? Penguraian cahaya putih menjadi berbagai macam warna disebut dengan dispersi. Dispersi terjadi karena adanya perbedaan indeks bias tiap cahaya, sehingga saat cahaya dibiaskan pada suatu medium, cahaya tadi mengeluarkan berbagai macam warna seperti pelangi. Contoh dispersi saat cahaya dibiaskan pada prisma segitiga sumber 7activestudio Selain gambar di atas, dispersi juga dapat terjadi saat cahaya matahari mengenai tetes-tetes air hujan. Mula-mula, cahaya matahari akan mengalami pembiasan oleh tetesan air hujan. Setelah itu, warna putih pada cahaya matahari akan diuraikan menjadi warna-warna indah di langit yang kita sebut dengan pelangi. Pelangi terjadi karena pembiasan antara sinar matahari dengan tetesan air hujan sumber It’s Aumsum Time via YouTube Perlu kamu ketahui, pelangi tidak selalu dapat dilihat saat turun hujan, lho. Alasannya karena posisi kita berdiri akan menentukan bisa atau tidaknya kita melihat pelangi. Agar dapat melihat pelangi dengan jelas, saat hujan, kita harus berdiri membelakangi matahari. Posisi matahari juga tidak boleh terlalu tinggi. Apabila terlalu tinggi, kita tidak akan bisa melihat pelangi sama sekali. Makanya, kemungkinan terbesar pelangi akan terlihat, yaitu saat turun hujan di pagi atau sore hari. Baca juga Macam-Macam Gerak pada Benda Beserta Contohnya Nah, kamu tahu nggak, sih? Peristiwa pembiasan cahaya tidak hanya menyebabkan terjadinya pelangi saja, lho! Masih banyak contoh pembiasan cahaya yang bisa kamu temui dalam kehidupan sehari-hari. Contohnya dapat kamu lihat pada gambar berikut ini. Sekarang, sudah terjawab kan kenapa pelangi bisa terjadi. Oh iya, kamu juga bisa lho membuat pelangi sendiri. Caranya, kamu bisa mencari tempat terbuka yang terkena sinar matahari. Lalu, semprotkan air menggunakan semprotan spry di daerah yang terkena sinar matahari tersebut. Hasilnya, kamu bisa melihat warna-warni yang muncul seperti warna pelangi. Keren, nggak? Jadi, nggak harus nunggu hujan turun deh untuk melihat pelangi. Guys, kamu juga dapat mempelajari materi pembiasan cahaya ini dengan lebih lengkap dan menarik lagi di ruangbelajar, loh. Bagi yang belum download, yuk buruan download aplikasinya sekarang!
Pembiasanpun terjadi di danau, sungai, laut, maupun kolam renang. Karena kecepatan cahaya di air lebih lambat dari kecepatan cahaya di udara, maka air pun terlihat lebih dangkal sekitar 3/4 dari kedalaman aslinya. Nah, begitulah cara cahaya 'memanipulasi' penglihatan kita, gan! Jadi, dalam melihat, tidak hanya mata dan objek yang terlibat
Pembiasan Cahaya – Pengertian, Indeks, Penerapan dan Contoh – – Untuk pembahasan kali ini kami akan mengulas mengenai Akuntansi Internasional yang dimana dalam hal ini meliputi Pengertian, indeks, penerapan dan contoh, klasifikasi dan peranan. Nah agar lebih dapat memahami dan mengerti simak pemaparan selengkapnya dibawah ini. Pembiasan adalah peristiwa pembelokan arah rambat cahaya yang terjadi ketika cahaya melewati bidang batas antara dua medium yang berbeda. Pembiasan terjadi apabila sinar datang membentuk sudut tertentu cahaya datang tidak tegaklurus terhadap bidang batas sudut datang lebih kecil dari 90O terhadap bidang batas. Cahaya adalah gelombang elektromagnetik yang merambat lurus ke segala arah dengan kecepatan 3 x 108 m/s dan mempunyai panjang gelombang sekitar 380–750 nm. Pada bidang fisika, cahaya adalah paket partikel yang disebut foton. Baca juga Artikel Terkait Tentang Materi Pengertian, Fitur Dan 6 Macam Gelombang Menurut Dasar Ukurannya Jadi, Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias mutlak suatu bahan ialah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di bahan tersebut. Indeks bias relatif merupakan perbandingan indeks bias dua medium berbeda. Indeks bias relatif medium kedua terhadap medium pertama ialah perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Pembiasan cahaya menyebabkan kedalaman semu dan pemantulan sempurna. Arah Pembiasan Cahaya Arah pembiasan cahaya dibedakan menjadi dua macam yaitu Mendekati garis normal Cahaya akan dibiaskan mendekati garis normal jika cahaya merambat dari medium optik kurang rapat ke medium optik lebih rapat, contohnya cahaya merambat dari udara ke dalam air. Menjauhi garis normal Cahaya dibiaskan menjauhi garis normal jika cahaya merambat dari medium optik lebih rapat ke medium optik kurang rapat, contohnya cahaya merambat dari dalam air ke udara atau dari kaca ke udara. Pembiasan cahayanya tampak seperti gambar di bawah ini Indeks Bias Cahaya Pembiasan cahaya dapat terjadi dikarenakan perbedaan laju cahaya pada kedua medium. Laju cahaya pada medium yang rapat lebih kecil dibandingkan dengan laju cahaya pada medium yang kurang rapat. Menurut Christian Huygens 1629-1695 “Perbandingan laju cahaya dalam ruang hampa dengan laju cahaya dalam suatu zat dinamakan indeks bias.” Secara matematis dapat dirumuskan dimana n = indeks bias c = laju cahaya dalam ruang hampa 3 x 108 m/s v = laju cahaya dalam zat Indeks bias tidak pernah lebih kecil dari 1 artinya, n ³1, dan nilainya untuk beberapa zat ditampilkan pada tabel disamping. Hukum Pembiasan Cahaya Pada sekitar tahun 1621, ilmuwan Belanda bernama Willebrord Snell melakukan eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias. Hasil eksperimen ini dikenal dengan nama hukum Snell yang berbunyi Sinar datang, garis normal, dan sinar bias terletak pada satu bidang datar. Hasil bagi sinus sudut datang dengan sinus sudut bias merupakan bilangan tetap disebut indeks bias. Secara matematis, hasil bagi sudut datang dan sudut bias dinyatakan sebagai i = sudut datang ; r = sudut bias Pembiasan Cahaya Pada Lensa Lensa adalah benda bening yang dibentuk sedemikian rupa sehingga dapat membiaskan atau meneruskan hampir semua cahaya yang melaluinya. Ada dua jenis lensa yaitu lensa cembung atau lensa positif dan lensa cekung atau lensa negatif. 1. Lensa Cembung Lensa cembung disebut juga lensa konvergen atau lensa positif merupakan lensa yang memiliki bagian tengah lebih tebal daripada bagian ujungnya. Agar lebih mudah memahami pembentukan bayangan yang terjadi, maka perhatikan bagian-bagian lensa cembung di bawah ini SU Sumbu Utama O Titik Pusat Optik Lensa f1 dan f2 Titik Api Fokus Lensa. O – f1 dan O – f2 f = Jarak Titik Api Lensa. R1 dan R2 Jari-Jari Kelengkungan Lensa. I, II, III Nomor Ruang Untuk Meletakkan Benda I, II, III, IV Nomor Ruang Untuk Bayangan Benda Baca Juga Artikel Terkait Tentang Materi “Lensa Cembung” Pengertian & Rumus – Contoh – Sifat Bayangan Ada 3 buah sinar istimewa pada lensa cembung, yaitu Sinar datang sejajar sumbu utama SU akan dibiaskan melalui titi api fokus/f; Sinar datang melalui titik api f akan dibiaskan sejajar sumbu utama SU; Sinar datang melalui titik pusat optik lensa O tidak dibiaskan melainkan diteruskan. Lensa cembung mempunyai sifat seperti cermin cekung. Oleh karena itu bayangan yang dibentukpun hampir sama, yaitu Bayangan nyata, terjadi dari perpotongan sinar-sinar bias yang mengumpul. Bayangan nyata pada lensa cembung terjadi jika benda terletak di ruang II dan III. Bayangan maya, terjadi dari perpotongan perpanjangan sinar-sinar bias yang divergen menyebar. Bayangan maya pada lensa cembung terjadi jika benda terletak di ruang I. 2. Lensa Cekung Lensa cekung disebut juga lensa divergen atau lensa negatif adalah lensa yang memiliki bagian tengan lebih tipis daripada bagian ujungnya. Agar lebih memahami pembentukan bayangan perhatikan gambar berikut Lensa cekung bersifat divergen atau menyebarkan cahaya. Pembentukan bayangan pada Lensa cekung mempunyai titik api fokus yang dinyatakan dengan negatif. Agar lebih mudah memahami pembentukan bayangan yang terjadi, maka perhatikan bagian-bagian lensa cekung di bawah ini SU Sumbu Utama O Titik Pusat Optik Lensa f1 dan f2 Titik Api Fokus Lensa. O – f1 dan O – f2 f = Jarak Titik Api Lensa. R1 dan R2 Jari-Jari Kelengkungan Lensa. Tiga berkas cahaya/sinar istimewa pada lensa cembung Sinar datang sejajar sumbu utama SU akan dibiaskan seolah-olah dari titik api f1; Sinar datang seolah-olah menuju titik api f2 akan dibiaskan sejajar sumbu utama SU Sinar datang melalui titik pusat optik lensa O tidak dibiaskan melainkan diteruskan. Lensa cekung hanya dapat membentuk satu macam bayangan, yaitu bayangan maya dari benda yang terletak di depan lensa dengan sembarang penempatan. Sifat bayangan yang terjadi Maya di depan lensa Tegak Diperkecil Baca Juga Artikel Terkait Tentang Materi “Lensa Cekung” Pengertian & Sifat – Rumus – Sinar Istimewa – Contoh Hubungan antara Jarak Benda, Jarak Bayangan, dan Jarak Titik Fokus Keterangan SO = jarak benda ke lensa Si = jarak bayangan ke lensa bernilai negatif bila bayangan yang dihasilkan bersifat maya f = jarak titik api lensa berharga positif M = perbesaran bayangan ho = tinggi benda hi = tinggi bayangan Hubungan antara jarak benda So, jarak bayangan Si, dan jarak fokus f Sama halnya pada cermin lengkung, pada lensa juga berlaku persamaan Keterangan So = Jarak benda Si = Jarak bayangan f = Jarak focus R = Jari-jari kelengkungan lensa M = Perbesaran bayangan ho = Tinggi benda hi = Tinggi bayangan Untuk lensa cembung, penggunaan persamaan tersebut dengan memperhatikan tanda sebagai berikut f ➯ bernilai positif + menunjukkan jarak fokus lensa cembung. So ➯bernilai positif + menunjukkan bendanya nyata. Si ➯bernilai positif + menunjukkan bayangannya nyata berada dibelakang lensa Si ➯ bernilai negatif - menunjukkan bayangannya maya berada di depan lensa Sedangkan untuk lensa cekung f ➯bernilai negatif - menunjukkan jarak fokus lensa cekung. So ➯bernilai positif + menunjukkan bendanya nyata. Si ➯bernilai negatif - menunjukkan bayangannya maya berada di depan lensa. Kekuatan Daya Lensa Kekuatan lensa atau daya lensa adalah kemampuan suatu lensa untuk memusatkan/mengumpulkan atau menyebarkan berkas sinar yang diterimanya. Besarnya daya P lensa berkebalikan dengan jarak titik apinya fokus. Semakin kecil fokus semakin besar daya lensanya. Keterangan P = daya lensa, satuannya dioptri f = jarak titik api, satuannya meter m Perhatikan ketentuan berikut 3. Pembiasan pada Prisma Gambar diatas menggambarkan seberkas cahaya yang melewati sebuah prisma. Gambar tersebut memperlihatkan bahwa berkas sinar tersebut dalam prisma mengalami dua kali pembiasan sehingga antara berkas sinar masuk ke prisma dan berkas sinar keluar dari prisma tidak lagi sejajar. Sudut yang dibentuk antara arah sinar datang dengan arah sinar yang meninggalkan prisma disebut sudut deviasi diberi lambang δ. Besarnya sudut deviasi tergantung pada sudut datangnya sinar. Dari gambar diatas kita ambil beberapa bagian Untuk segiempat ABCD Pada segitiga ABC Pada Segitiga ACE Besarnya sudut deviasi dapat dicari sebagai berikut. δ = 180o – x = 180o – 180° – i1 – r2 + β = 180o –180o + i1 + r2 – β = i1 + r2 – β Deviasi Minimum δminimum = 2i1– β 2i1 = δmin + β i1 = Syarat i1= r2 Penerapan Pembiasan Dalam Kehidupan Sehari-hari Dalam hal ini peristiwa pembiasan cahaya terjadi dalam kehidupan sehari-hari antara lain Sedotan Yang Tercelup Air Sebagian Tampak Membengkok Sedotan yang sebagian batangnya tercelup di dalam air akan tampak bengkok jika dilihat dari luar. Hal ini disebabkan cahaya datang dari udara “kurang rapat” menuju air “lebih rapat” akan dibiaskan menjauhi garis normal. Proses pembiasan cahaya berlangsung di dalam gelas, yang sehingga jika dilihat dari luar gelas batang sedotan tampak bengkok karena tidak berada di titik sebenarnya “garis normal”, selain sedotan batang pensil, pulpen, spidol yang dimasukkan ke dalam gelas berisi air juga kan terlihat bengkok jika dilihat dari luar gelas. Dasar Kolam Tampak Dangkal Dasar kolam akan terlihat dangkal bila dilihat dari darat, hal ini disebabkan cahaya datang dari udara “kurang rapat” menuju air “lebih rapat” akan dibiaskan menjauhi garis normal. Proses pembiasan cahaya berlangsung di dalam kolam. Sehingga yang terlihat sebagai dasar kolam merupakan bayangan dasar kolam bukan dasar kolam yang sesungguhnya. Berlian Dan Intan Tampak Berkilauan Cahaya yang masuk ke dalam intan maupun berlian mengalami beberapa kali pembiasan oleh permukaan intan maupun permukaan berlian tersebut. Hal ini disebabkan indeks bias intan yang besar yakni dan sudut kritis intan kecil hanya 24 derajat. Baca Juga Artikel Terkait Tentang Materi Pengertian, Fungsi Dan Bagian Dari Mikroskop Contoh Soal 1. Suatu benda diletakkan di depan sebuah lensa cembung yang memiliki jarak titik fokus 8 cm. Tentukan jarak benda dari lensa jika diinginkan bayangan yang terbentuk terletak 16 cm di belakang lensa! Pembahasan dik f = 8 cm dit S =…. Untuk bayangan yang terbentuk terletak 16 cm di belakang lensa, artinya bayangannya bersifat nyata, sehingga tanda untuk s adalah positif. s = 16 cm s =….. Dengan rumus lensa diperoleh jarak bendanya 2. Untuk mendapatkan bayangan yang terletak pada jarak 15 cm di belakang lensa positip yang jarak titik apinya 7,5 cm maka benda harus diletakkan di depan lensa tersebut pada jarak… Pembahasan dik f = 7,5 cm s = 15 cm dit s = ….. 3. Seseorang yang miopi titik dekatnya 20 cm sedang titik jauhnya 50 cm. Agar ia dapat melihat jelas benda yang jauh, ia harus memakai kacamata yang kekuatannya… Pembahasan dik PP = 20 cm PR = 50 cm Untuk melihat benda yang jauh → Revisi titik jauhnya P = …. 4. Dua buah lensa positif masing-masing memiliki fokus 3 cm dan 6 cm diletakkan sejauh 20 cm. Sebuah benda diletakkan sejauh 4 cm di depan lensa pertama. Dengan pembiasan cahaya terjadi lebih dahulu pada lensa pertama, tentukan berturut-turut Pembahasan a Letak bayangan yang dibentuk oleh lensa pertama. s = 4 cm ; f = 3 dit s =…. Letak bayangan 12 cm di belakang lensa pertama. b Letak bayangan yang dibentuk oleh lensa kedua. Bayangan yang dibentuk oleh lensa pertama, menjadi benda untuk lensa kedua. Letak benda untuk lensa kedua adalah 20 cm dikurangi 12 cm = 8 cm. Letak bayangan dengan demikian adalah s’ bertanda positif jadi posisinya 24 cm di belakang lensa kedua. Demikianlah pembahasan mengenai Pembiasan Cahaya – Pengertian, Indeks, Penerapan dan Contoh semoga dengan adanya ulasan tersebut dapat menambah wawasan dan pengetahuan kalian semua, terima kasih banyak atas kunjungannya. 🙂 🙂 🙂 PenyebabTerjadinya Pelangi. Pelangi adalah fenomena alam yang terjadi ketika sinar matahari dan hujan saling bereaksi dengan cara tertentu. Fenomena alam yang satu ini memang sangat menarik karena membentuk warna-warni indah yang berada sejajar dan melengkung di langit maupun medium lainnya. Pelangi hanya dapat dilihat saat terdapat cahaya Jawaban: C. Baca juga : Pembahasan SBMPTN Fisika Energi dan Daya Listrik. Soal 9. Hasil pembiasan dari cahaya monokromatik yang melalui prisma ditunjukkan pada gambar di bawah ini. Berdasarkan data pada gambar, sanggup ditetapkan bahwa (1) Sudut pembias prisma = 60 o. (2) Indeks bias materi prisma yaitu √2.
Цወгоρቨρեнт ጳикр խχежяшըцеՑէዖа ωщаниπ
Ταронէձ ጅգևչաчըноμИμ ифաдоኑαցը
Ըцէኹущоձ шадዟзоրаሟԱщաሱиቶ ኛ тιбኽ
ፈፎ ωгաщуρеጵኦгሻε всоዉаслոտ

Berkascahaya dating dari medium yang berat mengenahi medium yang beratringan; Berkas cahaya dating dari medium yang rapat mengenahi medium yang beratringan; Semua jawaban benar; Jawaban: A. Berkas cahaya dating dari medium yang tidak rapat mengenahi medium yang rapat. Dilansir dari Encyclopedia Britannica, perhatikan gambar pembiasan dibawah

Pembiasancahaya melibatkan sudut yang sinar datang dan sinar dibiaskan dan garis normal pada bidang batas antara dua medium. Dari gambar terlihat bahwa berkas cahaya yang masuk dengan berkas cahaya yang keluar dari kaca plan pararel merupakan garis yang sejajar. Berlian memiliki indeks bias tinggi - yang berarti mereka benar-benar bisa Faktayang benar tentang hubungan antara cahaya dan kemampuan mata untuk melihat benda adalah . Pelajari Juga: Manakah dari gambar di bawah ini yang menunjukkan pembiasan cahaya dari udara ke air . Jawaban: A. Soal No. 8. Peristiwa yang merupakan akibat pembiasan cahaya yaitu . A. Terbentuknya warna pada gelembung sabun. Gejg7W9.
  • i7qfrh72kq.pages.dev/367
  • i7qfrh72kq.pages.dev/118
  • i7qfrh72kq.pages.dev/107
  • i7qfrh72kq.pages.dev/136
  • i7qfrh72kq.pages.dev/160
  • i7qfrh72kq.pages.dev/130
  • i7qfrh72kq.pages.dev/200
  • i7qfrh72kq.pages.dev/123
  • i7qfrh72kq.pages.dev/152
  • gambar pembiasan cahaya yang benar